Category: Coding

Kafka Consumer and Producer Example – Java

Producer

package com.example;

import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.common.serialization.StringSerializer;

import java.io.InputStream;
import java.time.LocalDateTime;
import java.time.format.DateTimeFormatter;
import java.util.Properties;

public class SimpleKafkaProducer {

    public static void main(String[] args) {
        if (args.length < 2) {
            System.err.println("Please provide Kafka server and port. Usage: SimpleKafkaProducer <kafka-server> <port>");
            System.exit(1);
        }

        String kafkaHost = args[0];
        String kafkaPort = args[1];
        String kafkaServer = kafkaHost + ":" + kafkaPort;
        String topicName = "LJRJavaTest";
        String truststorePassword = "truststore-password";

        Properties props = new Properties();
        props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, kafkaServer);
        props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());
        props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());

        // Load truststore from resources
        try (InputStream truststoreStream = SimpleKafkaProducer.class.getResourceAsStream("/kafka.client.truststore.jks")) {
            if (truststoreStream == null) {
                throw new RuntimeException("Truststore not found in resources");
            }

            // Create a temporary file to hold the truststore
            java.nio.file.Path tempTruststore = java.nio.file.Files.createTempFile("kafka.client.truststore", ".jks");
            java.nio.file.Files.copy(truststoreStream, tempTruststore, java.nio.file.StandardCopyOption.REPLACE_EXISTING);

            props.put("security.protocol", "SSL");
            props.put("ssl.truststore.location", tempTruststore.toString());
            props.put("ssl.truststore.password", truststorePassword);

            KafkaProducer<String, String> producer = new KafkaProducer<>(props);

            // Define the date-time formatter
            DateTimeFormatter formatter = DateTimeFormatter.ofPattern("yyyyMMdd 'at' HH:mm:ss");

            try {
                for (int i = 0; i < 10; i++) {
                    String key = "Key-" + i;
                    
                    // Get the current timestamp
                    String timestamp = LocalDateTime.now().format(formatter);
                    
                    // Include the timestamp, Kafka host, and port in the message value
                    String value = String.format("Message-%d (Test from %s on server %s:%s)", i, timestamp, kafkaHost, kafkaPort);
                    
                    ProducerRecord<String, String> record = new ProducerRecord<>(topicName, key, value);
                    producer.send(record);
                    System.out.println("Sent message: (" + key + ", " + value + ")");
                }
            } catch (Exception e) {
                e.printStackTrace();
            } finally {
                producer.close();
            }
        } catch (Exception e) {
            e.printStackTrace();
        }
    }
}

Consumer

package com.example;

import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.common.serialization.StringDeserializer;

import java.io.InputStream;
import java.time.Duration;
import java.util.Collections;
import java.util.Properties;

public class SimpleKafkaConsumer {

    public static void main(String[] args) {
        if (args.length < 2) {
            System.err.println("Please provide Kafka server and port. Usage: SimpleKafkaConsumer <kafka-server> <port>");
            System.exit(1);
        }

        String kafkaServer = args[0] + ":" + args[1];
        String topicName = "LJRJavaTest";
        String groupId = "test-consumer-group";
        String truststorePassword = "truststore-password";

        Properties props = new Properties();
        props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, kafkaServer);
        props.put(ConsumerConfig.GROUP_ID_CONFIG, groupId);
        props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
        props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
        props.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest");

        // Load truststore from resources
        try (InputStream truststoreStream = SimpleKafkaConsumer.class.getResourceAsStream("/kafka.client.truststore.jks")) {
            if (truststoreStream == null) {
                throw new RuntimeException("Truststore not found in resources");
            }

            // Create a temporary file to hold the truststore
            java.nio.file.Path tempTruststore = java.nio.file.Files.createTempFile("kafka.client.truststore", ".jks");
            java.nio.file.Files.copy(truststoreStream, tempTruststore, java.nio.file.StandardCopyOption.REPLACE_EXISTING);

            props.put("security.protocol", "SSL");
            props.put("ssl.truststore.location", tempTruststore.toString());
            props.put("ssl.truststore.password", truststorePassword);

            KafkaConsumer<String, String> consumer = new KafkaConsumer<>(props);
            consumer.subscribe(Collections.singletonList(topicName));

            try {
                while (true) {
                    ConsumerRecords<String, String> records = consumer.poll(Duration.ofMillis(100));
                    for (ConsumerRecord<String, String> record : records) {
                        System.out.printf("Consumed message: (key: %s, value: %s, offset: %d, partition: %d)%n",
                                record.key(), record.value(), record.offset(), record.partition());
                    }
                }
            } catch (Exception e) {
                e.printStackTrace();
            } finally {
                consumer.close();
            }
        } catch (Exception e) {
            e.printStackTrace();
        }
    }
}

Keystore for Trusts

The cert on my Kafka server is signed by a CA that has both a root and intermediary signing certificate. To trust the chain, I need to populate rootCA.crt and intermediateCA.crt files with the correct base64 encoded public key and import both files into a new trust store:

keytool -importcert -file rootCA.crt -keystore kafka.client.truststore.jks -alias rootCA -storepass truststore-password

keytool -importcert -file intermediateCA.crt -keystore kafka.client.truststore.jks -alias intermediateCA -storepass truststore-password

Then list certs in the trust store to verify the import was successful:

keytool -list -keystore kafka.client.truststore.jks -storepass truststore-password

And place the jks keystore with the CA certs in project:

C:.
│   pom.xml
│
├───src
│   └───main
│       ├───java
│       │   └───com
│       │       └───example
│       │               SimpleKafkaProducer.java
│       │
│       └───resources
│               kafka.client.truststore.jks

Build and Run

Create a pom.xml for the build

<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>com.example</groupId>
    <artifactId>kafka-producer-example</artifactId>
    <version>1.0-SNAPSHOT</version>
    
    <properties>
        <maven.compiler.source>1.8</maven.compiler.source>
        <maven.compiler.target>1.8</maven.compiler.target>
    </properties>

    <dependencies>
        <!-- Kafka client dependency -->
        <dependency>
            <groupId>org.apache.kafka</groupId>
            <artifactId>kafka-clients</artifactId>
            <version>3.0.0</version>
        </dependency>
    </dependencies>

    <build>
        <plugins>
            <!-- Compiler plugin to ensure Java 8 compatibility -->
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-compiler-plugin</artifactId>
                <version>3.8.1</version>
                <configuration>
                    <source>1.8</source>
                    <target>1.8</target>
                </configuration>
            </plugin>
            <!-- Exec Maven Plugin to run the Java class -->
            <plugin>
                <groupId>org.codehaus.mojo</groupId>
                <artifactId>exec-maven-plugin</artifactId>
                <version>3.0.0</version>
                <configuration>
                    <mainClass>com.example.SimpleKafkaProducer</mainClass>
                </configuration>
            </plugin>
        </plugins>
    </build>
</project>

Build using `mvn clean package`

Run the producer using ` mvn exec:java -Dexec.mainClass=”com.example.SimpleKafkaProducer” -Dexec.args=”kafkahost.example.net 9095″`

Run the consumer using ` mvn exec:java -Dexec.mainClass=”com.example.SimpleKafkaConsumer” -Dexec.args=”kafkahost.example.net 9095″`

Watching Redis Records for Strange Changes

I write a lot of things down to save myself time the next time I need to do the same sort of thing — and publish this to the Internet in case I can save someone else time too. But this one is so specific, I’m not sure it’s an “ever going to encounter this again” sort of thing. Just in case, though — I have device data being stored in redis — because the device doesn’t know its throughput values, you need the last time and last value paired with the current device metrics to calculate throughput. OK. But, sporadically, the cached data is updated insomuch as a new record is posted with a new timestamp. But the actual values, other than timestamp, remain unchanged. With millions of interfaces, it’s challenging to identify these situations by spot-checking the visualizations. Instead, I need to monitor redis and identify when the tstamp is updated but no other values change.

import redis
import time
import re
import json
import os

# Configuration
redis_host = 'redishost.example.net'
redis_port = 6379
redis_password = 'P@5sw0rDG03sH3r3'  # Replace with your Redis password
pattern = re.compile(r'INTERFACE_RAW_STATS_hostname\d\d\d\d_\d+_\d+')
output_file = 'changed_records.json'

# Connect to Redis
client = redis.StrictRedis(host=redis_host, port=redis_port, password=redis_password, decode_responses=True)

# Dictionary to track records
records = {}
matching_keys = []

def get_matching_keys():
    """
    Retrieve keys from Redis matching the specified pattern.

    Returns:
        list: A list of keys that match the pattern.
    """
    all_keys = client.keys()
    matching_keys = [key for key in all_keys if pattern.match(key)]
    return matching_keys

def process_keys():
    """
    Process Redis keys to track changes in data.

    Retrieves keys matching the pattern, gets their data using HGETALL,
    and tracks changes. If only the 'tstamp' field has changed and all
    other fields remain the same, the record is written to a file.
    """
    global records
    i = 0

    for key in matching_keys:
        i += 1
        data = client.hgetall(key)
        if i == 1 or i % 1000 == 0:
            print(f"Processed {i} records")

        if not data:
            continue

        collector_name = data.get('collectorName')
        node_id = data.get('nodeId')
        if_index = data.get('ifIndex')
        tstamp = data.get('tstamp')

        if not collector_name or not node_id or not if_index or not tstamp:
            continue

        unique_key = f"{collector_name}_{node_id}_{if_index}"

        if unique_key in records:
            previous_data = records[unique_key]
            if previous_data['tstamp'] != tstamp:
                # Check if all other values are the same
                if all(data[k] == previous_data[k] for k in data if k != 'tstamp'):
                    print(f"***** Record changed: {json.dumps(data, indent=2)} *****")
                    write_to_file(data)
            records[unique_key] = data  # Update the record
        else:
            records[unique_key] = data

def write_to_file(data):
    """
    Write the given data to a file.

    Args:
        data (dict): The data to write to the file.
    """
    with open(output_file, 'a') as file:
        file.write(json.dumps(data) + '\n')

if __name__ == "__main__":
    # Ensure the output file is empty at the start
    if os.path.exists(output_file):
        os.remove(output_file)

    # Retrieve the list of matching keys once
    matching_keys = get_matching_keys()

    while True:
        process_keys()
        print("Sleeping ... ")
        time.sleep(300)  # Sleep for 5 minutes

Kafka Streams, Consumer Groups, and Stickiness

The Java application I recently inherited had a lot of … quirks. One of the strangest was that it calculated throughput statistics based on ‘start’ values in a cache that was only refreshed every four hours. So at a minute past the data refresh, the throughput is averaged out over that minute. At three hours and fifty nine minutes past the data refresh, the throughput is averaged out over three hours and fifty nine minutes. In the process of correcting this (reading directly from the cached data rather than using an in-memory copy of the cached data), I noticed that the running application paused a lot as the Kafka group was re-balanced.

Which is especially odd because I’ve got a stable number of clients in each consumer group. But pods restart occasionally, and there was nothing done to attempt to stabilize partition assignment.

Which was odd because Kafka has had mechanisms to reduce re-balancing — StickyAssignor added in 0.11

        // Set the partition assignment strategy to StickyAssignor
        config.put(ConsumerConfig.PARTITION_ASSIGNMENT_STRATEGY_CONFIG, "org.apache.kafka.clients.consumer.StickyAssignor");

And groupInstanceId in 2.3.0

        // Set the group instance ID
        String groupInstanceId = UUID.randomUUID().toString();
        config.put(ConsumerConfig.GROUP_INSTANCE_ID_CONFIG, groupInstanceId);

Now, I’m certain that a UUID isn’t the best way to go about crafting your group instance ID name … but it produces a “name” that isn’t likely to be duplicated. Since deploying this change, I went from seeing three or four re-balance operations an hour to zero.

Kafka Streams Group Members and Topic Partitions

I encountered an oddity in a Java application that uses Kafka Streams to implement a scalable application that reads data from Kafka topics. Data is broken out into multiple topics, and there are Kubernetes pods (“workers”) reading from each topic. The pods have different numbers of replicas defined. But it appears that no one ever aligned the topic partitions with the number of workers being deployed.

Kafka Streams assigns “work” to group members by partition. If you have ten partitions and five workers, each worker processes the data from two partitions. However, when the numbers don’t line up … some workers get more partitions than others. Were you to have eleven partitions and five workers, four workers would get data from two partitions and the fifth worker gets data from three.

Worse – in some cases we have more workers than partitions. Those extra workers are using up some resources, but they’re not actually processing data.

It’s a quick fix — partitions can be added mostly invisibly (the consumer group will be re-balanced, write operations won’t really change. New data just starts getting placed in the new partitions), so I increased our partition counts to be 2x the number of workers. This allows us to add a few workers to a topic if it gets backlogged, but the configuration evenly distributes the work across all of the normally running pods.

Migrating Redis Data

So, I know that Redis should be a data cache that can be repopulated … but we use it to calculate deltas (what was the value last time) … so repopulating the information makes the first half hour or so of calculations rather slow as the application tries redis, gets nothing, and fails back to a database query. Then we get a backlog of data to churn through, and it would just be better if the Redis cache hadn’t gone away in the first place. And if you own both servers and the files are in the same format, you could just copy the cache db from the old server to the new one. But … when you cannot just copy the file and you would really prefer the data not disappear and need to be repopulated … there’s a script for that! This python script reads all of the data from the “old” server and populates it into the “new” server.

import redis

def migrate_data(redis_source_host, redis_source_port, redis_source_db, redis_source_password,
                 redis_dest_host, redis_dest_port, redis_dest_db, redis_dest_password):
    # Connect to the source Redis server
    source_client = redis.StrictRedis(host=redis_source_host, port=redis_source_port, db=redis_source_db, password=redis_source_password)

    # Connect to the destination Redis server
    dest_client = redis.StrictRedis(host=redis_dest_host, port=redis_dest_port, db=redis_dest_db, password=redis_dest_password)

    # Fetch all keys from the source Redis
    keys = source_client.keys('*')

    for key in keys:
        # Get the type of the key
        key_type = source_client.type(key).decode('utf-8')

        if key_type == 'string':
            value = source_client.get(key)
            print("Setting string value in dest")
            dest_client.set(key, value)
        elif key_type == 'list':
            values = source_client.lrange(key, 0, -1)
            print("Setting list value in dest")
            dest_client.delete(key)  # Ensure the list is empty before pushing
            for value in values:
                dest_client.rpush(key, value)
        elif key_type == 'set':
            values = source_client.smembers(key)
            print("Setting set value in dest")
            dest_client.delete(key)  # Ensure the set is empty before pushing
            for value in values:
                dest_client.sadd(key, value)
        elif key_type == 'zset':
            values = source_client.zrange(key, 0, -1, withscores=True)
            print("Setting zset value in dest")
            dest_client.delete(key)  # Ensure the zset is empty before pushing
            for value, score in values:
                dest_client.zadd(key, {value: score})
        elif key_type == 'hash':
            values = source_client.hgetall(key)
            print("Setting hash value in dest")
            dest_client.delete(key)  # Ensure the hash is empty before pushing
            dest_client.hmset(key, values)

    print("Data migration completed.")

if __name__ == "__main__":
    # Source Redis server details
    redis_source_host = 'oldredis.example.com'
    redis_source_port = 6379
    redis_source_db = 0
    redis_source_password = 'SourceRedisPassword'

    # Destination Redis server details
    redis_dest_host = 'newredis.example.com'
    redis_dest_port = 6379
    redis_dest_db = 0
    redis_dest_password = 'DestRedisPassword'

    # Migrate data
    migrate_data(redis_source_host, redis_source_port, redis_source_db, redis_source_password,
                 redis_dest_host, redis_dest_port, redis_dest_db, redis_dest_password)

SNMP Simulator

Background

As communication between development and production platforms is limited for security and data integrity reasons, this creates a challenge when testing changes in development: we cannot access “real world” data with which to perform tests. Having a limited set of data in development means testing may not illuminate issues that occur at high volume or on a large scale.

Solution

While limiting communication between the prod and dev systems is reasonable, it would be beneficial to be able to replay production-like data within our development systems for testing purposes. While it is not cost effective to buy large network devices with thousands of interfaces for testing, the Python module snmpsim provides “canned responses” that simulate real devise on the production network. For simplicity, I have a bash script that launches the SNMP responder.

server03:snmpsim # cat ../_playback.sh

#!/bin/bash

snmpsimd.py –data-dir=/opt/snmp/snmpsim/data –cache-dir=/opt/snmp/snmpsim/cache –agent-udpv4-endpoint=0.0.0.0:161 –process-user=ljrsnmp –process-group=ljrsnmp

This responder will replay data stored in the directory /opt/snmp/snmpsim/data – any file ending in snmprec will be included in the response, and the filename prior to .snmprec is the community string to access the response data. E.G. public.snmprec is the data for the public community string

The response files are in the format OID|TAG|VALUE where OID is the OID number of the SNMP object, TAG is an integer defined at https://pypi.org/project/snmpsim/0.2.3/

Valid tag values and their corresponding ASN.1/SNMP types are:

ASN.1/SNMP TypeTag Value
Integer322
Octet String4
Null5
Object Identifier6
IP Address64
Counter3265
Gauge3266
Time Ticks67
Opaque68
Counter6570

And the value is the data to be returned for the OID object. As an example:

1.3.6.1.2.1.1.3.0|67|2293092270

1.3.6.1.2.1.1.3.0 is the sysUpTime, the data type is TimeTicks, and the system up time is 2293092270 hundredths of a second. Or 6375 hours, 20 minutes, and 24 seconds.

Items within the response file need to be listed in ascending order.

Generating Response Data

There are two methods for creating the data provided to an SNMP GET request. A response file can be created manually, populated with OID objects that should be included in the response as well as sample data. Alternatively, a network trace can be gathered from the production network and parsed to create the response file.

Manually Generated Response File

While you can literally type data into a response file, but it is far easier to use a script to generate sample data. /opt/snmp/snmpsim/_genData.py is an example of creating a response file for about 1,000 interfaces

from datetime import datetime
import random

iRangeMax = 1000

dictTags = {'Integer': '2', 'OctetString': '4', 'NULL': '5', 'ObjectIdentifier': '6', 'IPAddress': '64', 'Counter32': '65', 'Gauge32': '66', 'TimeTicks': '67', 'Opaque': '68','Counter64': '70'}  # Valid tags per https://pypi.org/project/snmpsim/0.2.3/

today = datetime.now()

iftable_snmp_objects = [
    ('1.3.6.1.2.1.2.2.1.1', 'Integer', lambda i: i),  # ifIndex
    ('1.3.6.1.2.1.2.2.1.2', 'OctetString', lambda i: f"SampleInterface{i}"),  # ifDescr
    ('1.3.6.1.2.1.2.2.1.3', 'Integer', lambda i: 6),  # ifType
    ('1.3.6.1.2.1.2.2.1.4', 'Integer', lambda i: 1500),  # ifMtu
    ('1.3.6.1.2.1.2.2.1.5', 'Gauge32', lambda i: 100000000),  # ifSpeed
    ('1.3.6.1.2.1.2.2.1.6', 'OctetString', lambda i: f"00:00:00:00:{format(i, '02x')[:2]}:{format(i, '02x')[-2:]}"),  # ifPhysAddress
    ('1.3.6.1.2.1.2.2.1.7', 'Integer', lambda i: 1),  # ifAdminStatus
    ('1.3.6.1.2.1.2.2.1.8', 'Integer', lambda i: 1),  # ifOperStatus
    ('1.3.6.1.2.1.2.2.1.9', 'TimeTicks', lambda i: int((datetime.now() - datetime(2024, random.randint(1, today.month), random.randint(1, today.day))).total_seconds()) * 100),  # ifLastChange
    ('1.3.6.1.2.1.2.2.1.10', 'Counter32', lambda i: random.randint(3, i*50000)),  # ifInOctets
    ('1.3.6.1.2.1.2.2.1.11', 'Counter32', lambda i: random.randint(3, i*50000)),  # ifInUcastPkts
    ('1.3.6.1.2.1.2.2.1.12', 'Counter32', lambda i: random.randint(0, 80)),  # ifInNUcastPkts
    ('1.3.6.1.2.1.2.2.1.13', 'Counter32', lambda i: random.randint(0, 80)),  # ifInDiscards
    ('1.3.6.1.2.1.2.2.1.14', 'Counter32', lambda i: random.randint(0, 80)),  # ifInErrors
    ('1.3.6.1.2.1.2.2.1.15', 'Counter32', lambda i: random.randint(3, i*50000)),  # ifInUnknownProtos
    ('1.3.6.1.2.1.2.2.1.16', 'Counter32', lambda i: random.randint(3, i*50000)),  # ifOutOctets
    ('1.3.6.1.2.1.2.2.1.17', 'Counter32', lambda i: random.randint(3, i*50000)),  # ifOutUcastPkts
    ('1.3.6.1.2.1.2.2.1.18', 'Counter32', lambda i: random.randint(3, i*50000)),  # ifOutNUcastPkts
    ('1.3.6.1.2.1.2.2.1.19', 'Counter32', lambda i: random.randint(0, 80)),  # ifOutDiscards
    ('1.3.6.1.2.1.2.2.1.20', 'Counter32', lambda i: random.randint(0, 80)),  # ifOutErrors
]

ifxtable_snmp_objects = [
    ('1.3.6.1.2.1.31.1.1.1.1', 'OctetString', lambda i: f"SampleInterface{i}"),  # ifName
    ('1.3.6.1.2.1.31.1.1.1.15', 'Gauge32', lambda i: "100"),  # ifHighSpeed
    ('1.3.6.1.2.1.31.1.1.1.6', 'Counter32', lambda i: random.randint(3, i*50000)),  # ifHCInOctets
    ('1.3.6.1.2.1.31.1.1.1.10', 'Counter32', lambda i: random.randint(3, i*60000)),  # ifHCOutOctets
]

# Print IFTable data
for oid_base, tag_type, value_func in iftable_snmp_objects:
    for i in range(1, iRangeMax+1):
        value = value_func(i)
        print(f"{oid_base}.{i}|{dictTags.get(tag_type)}|{value}")

# IP-MIB objects for managing IP addressing
# ipAdEntAddr: The IP address to which this entry's addressing information pertains
print(f"1.3.6.1.2.1.4.20.1.1|{dictTags.get('IPAddress')}|10.5.5.5")

# ipAdEntIfIndex: The index value which uniquely identifies the interface to which this entry is applicable
print(f"1.3.6.1.2.1.4.20.1.2|{dictTags.get('OctetString')}|1")

# ipAdEntNetMask: The subnet mask associated with the IP address of this entry
print(f"1.3.6.1.2.1.4.20.1.3|{dictTags.get('OctetString')}|255.255.255.0")

# hrSWRunIndex: An index uniquely identifying a row in the hrSWRun table
print(f"1.3.6.1.2.1.25.4.2.1.1.1|{dictTags.get('Integer')}|1")

# hrSWRunName: The name of the software running on this device
print(f"1.3.6.1.2.1.25.4.2.1.2.1|{dictTags.get('OctetString')}|LJRSNMPAgent")
# hrSWRunID: The product ID of the software running on this device
print(f"1.3.6.1.2.1.25.4.2.1.3.1|{dictTags.get('ObjectIdentifier')}|1.3.6.1.4.1.25709.55")

# hrSWRunPath: The path of the software running on this device
print(f"1.3.6.1.2.1.25.4.2.1.4.1|{dictTags.get('OctetString')}|/opt/snmp/snmpsim/_agent.sh")

# hrSWRunParameters: Operational parameters for the software running on this device
print(f"1.3.6.1.2.1.25.4.2.1.5.1|{dictTags.get('OctetString')}|-L")

# hrSWRunType: The type of software running (e.g., operating system, application)
print(f"1.3.6.1.2.1.25.4.2.1.6.1|{dictTags.get('Integer')}|4")

# hrSWRunStatus: The status of this software (running, runnable, notRunnable, invalid)
print(f"1.3.6.1.2.1.25.4.2.1.7.1|{dictTags.get('Integer')}|1")


for oid_base, tag_type, value_func in ifxtable_snmp_objects:
    for i in range(1, iRangeMax+1):
        value = value_func(i)
        print(f"{oid_base}.{i}|{dictTags.get(tag_type)}|{value}")

Network Capture

Even better, parse a network capture file.

Capture Data

On the server that gathers SNMP data from the host we want to simulate, use a network capture utility to gather the SNMP communication between the server and the desired device.

tcpdump -i <interface> -w <filename>.pcap

E.G. to record the communication with 10.5.171.114

tcpdump ‘host 10.5.171.114 and (tcp port 161 or tcp port 162 or udp port 161 or udp port 162)’ -w /tmp/ar.pcap

Note – there Is no benefit to capturing more than one cycle of SNMP responses. If data is captured immediately, that means the devices were in the middle of a cycle. End the capture and start a new one shortly. There should be no packets captured for a bit, then packets during the SNMP polling cycle, and then another pause until the next cycle.

Parsing The Capture Data Into A Response File

The following script parses the capture file into an snmprec response file – note, I needed to use 2.6.0rc1 of scapy to parse SNMP data. The 2.5.0 release version failed to parse most of the packets which I believe is related to https://github.com/secdev/scapy/issues/3900

from scapy.all import rdpcap, SNMP
from scapy.layers.inet import UDP
from scapy.packet import Raw
from scapy.layers.snmp import SNMP, SNMPvarbind, SNMPresponse, SNMPbulk
from scapy.all import conf, load_layer
from scapy.utils import hexdump

from scapy.all import UDP, load_contrib
from scapy.packet import bind_layers

import os
from datetime import datetime
import argparse

# Ensure Scapy's SNMP contributions are loaded
load_contrib("snmp")

def sort_by_oid(listSNMPResponses):
    """
    Sorts a list of "OID|TAG|Value" strings by the OID numerically and hierarchically.

    :param listSNMPResponses: A list of "OID|TAG|Value" strings.
    :return: A list of "OID|TAG|Value" strings sorted by OID.
    """
    # Split each element into a tuple of (OID list, original string), converting OID to integers for proper comparison
    oid_tuples = [(list(map(int, element.split('|')[0].split('.'))), element) for element in listSNMPResponses]

    # Sort the list of tuples by the OID part (the list of integers)
    sorted_oid_tuples = sorted(oid_tuples, key=lambda x: x[0])

    # Extract the original strings from the sorted list of tuples
    sorted_listSNMPResponses = [element[1] for element in sorted_oid_tuples]

    return sorted_listSNMPResponses

parser = argparse.ArgumentParser(description='This script converts an SNMP packet capture into a snmpsim response file')
parser.add_argument('--filename', '-f', help='The capture file to process', required=True)

args = parser.parse_args()
strFullCaptureFilePath = args.filename
strCaptureFilePath, strCaptureFileName = os.path.split(strFullCaptureFilePath)


# Valid tags per https://pypi.org/project/snmpsim/0.2.3/
dictTags = {'ASN1_INTEGER': '2', 'ASN1_STRING': '4', 'ASN1_NULL': '5', 'ASN1_OID': '6', 'ASN1_IPADDRESS': '64', 'ASN1_COUNTER32': '65', 'ASN1_GAUGE32': '66', 'ASN1_TIME_TICKS': '67', 'Opaque': '68','ASN1_COUNTER64': '70'}

listSNMPResponses = []
listSNMPResponses.append("1.3.6.1.2.1.25.4.2.1.1.1|2|1")
listSNMPResponses.append("1.3.6.1.2.1.25.4.2.1.2.1|4|LJRSNMPAgent")
listSNMPResponses.append("1.3.6.1.2.1.25.4.2.1.3.1|6|1.3.6.1.4.1.25709.55")
listSNMPResponses.append("1.3.6.1.2.1.25.4.2.1.4.1|4|/opt/snmp/snmpsim/_agent.sh")
listSNMPResponses.append("1.3.6.1.2.1.25.4.2.1.5.1|4|-L")
listSNMPResponses.append("1.3.6.1.2.1.25.4.2.1.6.1|2|4")
listSNMPResponses.append("1.3.6.1.2.1.25.4.2.1.7.1|2|1")
i = 0

if True:
    packets = rdpcap(strFullCaptureFilePath)
    # Packets are zero indexed, so packet 1 in script is packet 2 in Wireshark GUI
    #for i in range(0,4):
    for packet in packets:
        print(f"Working on packet {i}")
        i = i + 1
        if SNMP in packet:
            snmp_layer = packet[SNMP]
            if isinstance(packet[SNMP].PDU,SNMPresponse):
                snmp_response = snmp_layer.getfield_and_val('PDU')[1]
                if hasattr(snmp_response, 'varbindlist') and snmp_response.varbindlist is not None:
                    for varbind in snmp_response.varbindlist:
                        strOID = varbind.oid.val if hasattr(varbind.oid, 'val') else str(varbind.oid)
                        strValue = varbind.value.val if hasattr(varbind.value, 'val') else str(varbind.value)
                        strType = type(varbind.value).__name__
                        if dictTags.get(strType):
                            iType = dictTags.get(strType)
                        else:
                            iType = strType

                        if isinstance(strValue, bytes):
                            print(f"Decoding {strValue}")
                            strValue = strValue.decode('utf-8',errors='ignore')

                        print(f"OID: {strOID}, Type: {strType}, Tag: {iType}, Value: {strValue}")
                        listSNMPResponses.append(f"{strOID}|{iType}|{strValue}")
            else:
                print(f"Not a response -- type is {type(packet[SNMP].PDU)}")
        elif Raw in packet:
            print(f"I have a raw packet at {i}")
        else:
            print(dir(packet))
            print(f"No SNMP or Raw in {i}: {packet}")

# Sort by OID numbers
listSortedSNMPResponses = sort_by_oid(listSNMPResponses)
f = open(f'/opt/snmp/snmpsim/data/{datetime.now().strftime("%Y%m%d")}-{strCaptureFileName.rsplit(".", 1)[0]}.deactivated', "w")
for strSNMPResponse in listSortedSNMPResponses:
    print(strSNMPResponse)
    f.write(strSNMPResponse)
    f.write("\n")
f.close()

This will create an snmpsim response file at /opt/snmp/snmpsim/data named as the capture file prefixed with the current year, month, and date. I.E. My ar.cap file results are /opt/snmp/snmpsim/data/20240705-ar.deactivated – you can then copy the file to whatever community string you want – cp 20240705-ar.deactivated CommunityString.snmprec

JPA/Hibernate Naming Strategies

One of the challenges of inheriting support of systems and code is reverse engineering what exactly you’ve got. In this case, I have Java code that reads from a Postgresql table named calculation_config & populates the information into a Redis cache. Except I could not find any text containing the string calculation_config. Started to wonder if grep was getting thrown off by line splits (although splitting a line in the middle of a table name is asking for future confusion), so was searching for sub-strings.

Which got me to the code that performs the operation — but the table is absolutely named calculationConfig in the code. ?????

package com.example.applicationmodel;
import lombok.Data;

import jakarta.persistence.*;

@Entity // This tells Hibernate to make a table out of this class
@Data // Lombok: adds getters and setters
@Table(name = "calculationConfig", schema = "components")
public class CalculationInfo {
    @Id
    private int functionId;
    private String dataCollectionGroup;
    private String component;
    private String metricInputs;
    private String metricName;
    private String functionDef;
    private String resourceType;
    private String metricDatatype;
    private String deviceModel;
    private String collectionSystem;
    private int status;
}

And today, I’ve learned about “naming strategies”. A mechanism used by the Hibernate ORM (Object-Relational Mapping) framework to map entities within Java code to table and column names. Other than obfuscation, why are we applying middleware principals to code?? Ostensibly because database naming “best practices” and code naming “best practices” vary. As an aside, I was taught the best naming best practice was one someone was likely to figure out with minimal confusion or research. Explicitly indicating the naming strategy might fit that requirement — ohh, here’s some strange name mapping thing in my code. Let me see what that means.

By default, Hibernate uses ImplicitNamingStrategy and PhysicalNamingStrategy to map Java names to database names. The default PhysicalNamingStrategyStandardImpl converts camelCase to snake_case.

So, for future reference … when I find table_name or field_name in my database, I should be grepping for tableName and fieldName in the code. That is … not super obvious.

Python Script: Alert for pending SAML IdP Certificate Expiry

I got a rather last minute notice from our security department that the SSL certificate used in the IdP partnership between my application and their identity provider would be expiring soon and did I want to renew it Monday, Tuesday, or Wednesday. Being that this was Friday afternoon … “none of the above” would have been my preference to avoid filing the “emergency change” paperwork, but Wednesday was the least bad of the three options. Of course, an emergency requires paperwork as to why you didn’t plan two weeks in advance. And how you’ll do better next time.

Sometimes that is a bit of a stretch — next time someone is working on the electrical system and drops a half-inch metal plate into the building wiring, I’m probably still going to have a problem when the power drops. But, in this case, there are two perfectly rational solutions. One, of course, would be that the people planning the certificate renewals start contacting partner applications more promptly. But that’s not within my purview. The thing I can do is watch the metadata on the identity provider and tell myself when the certificates will be expiring soon.

So I now have a little python script that has a list of all of our SAML-authenticated applications. It pulls the metadata from PingID, loads the X509 certificate, checks how far in the future the expiry date is. In my production version, anything < 30 days sends an e-mail alert. Next time, we can contact security ahead of time, find out when they’re planning on doing the renewal, and get the change request approved well in advance.

import requests
import xml.etree.ElementTree as ET
from cryptography import x509
from cryptography.hazmat.backends import default_backend
from datetime import datetime, date

strIDPMetadataURLBase = 'https://login.example.com/pf/federation_metadata.ping?PartnerSpId='
listSPIDs = ["https://tableau.example.com", "https://email.example.com", "https://internal.example.com", "https://salestool.example.com"]

for strSPID in listSPIDs:
    objResults = requests.get(f"{strIDPMetadataURLBase}{strSPID}")
    if objResults.status_code == 200:
        try:
            root = ET.fromstring(objResults.text)

            for objX509Cert in root.findall("./{urn:oasis:names:tc:SAML:2.0:metadata}IDPSSODescriptor/{urn:oasis:names:tc:SAML:2.0:metadata}KeyDescriptor/{http://www.w3.org/2000/09/xmldsig#}KeyInfo/{http://www.w3.org/2000/09/xmldsig#}X509Data/{http://www.w3.org/2000/09/xmldsig#}X509Certificate"):
                strX509Cert = f"-----BEGIN CERTIFICATE-----\n{objX509Cert.text}\n-----END CERTIFICATE-----"

                cert = x509.load_pem_x509_certificate(bytes(strX509Cert,'utf8'), default_backend())
                iDaysUntilExpiry = cert.not_valid_after - datetime.today()
                print(f"{strSPID}\t{iDaysUntilExpiry.days}")
        except:
            print(f"{strSPID}\tFailed to decode X509 Certficate")
    else:
        print(f"{strSPID}\tFailed to retrieve metadata XML")

Python: Listing XML tags

I was having a lot of trouble using find/findall when parsing an XML document — turns out the namespace prefixed the tag name … so I needed to find {http://maven.apache.org/POM/4.0.0}groupId instead of just groupId

How do you figure that out? Quickest way, for me, was just to print out all of the tag names.

from lxml import etree
# Load POM XML into tree
tree = etree.parse( strXMLFile )

# # List all element names in XML document
for element in tree.iter():
     print(element.tag)

Python: Generate Transcript of Video File

There’s a speech_recognition module in Python that transcribes an audio file — since ffmpeg can convert a video file to mp3, that means you can also use Python to transcribe a video file.

# requires pocketsphinx from CMU if using sphinx for speech to text recognition
import os
import speech_recognition as sr
import ffmpeg

strFFMPEGBinaryLocation = 'c:/tmp/ffmpeg/bin/ffmpeg.exe'
strCurrentDirectory = os.getcwd()

strInputVideo = "\"Z:/Path To/My Video/file.MP4\""
strOutputFileName = "converted.wav"
# Convert mp4 to wav file
strffmpeg_convert_mp4_to_wav = f'{strFFMPEGBinaryLocation} -i {strInputVideo} {strCurrentDirectory}/{strOutputFileName}'
os.system(strffmpeg_convert_mp4_to_wav)

# Run converted wav file through speech recognizer
r = sr.Recognizer()
audio = sr.AudioFile(f'{strCurrentDirectory}/{strOutputFileName}')

with audio as source:
	#audio = r.record(source, 90)				# Would need API key to process longer audio?
	#text = r.recognize_google(audio)
	audio = r.record(source)
	text = r.recognize_sphinx(audio)
print(text)