The company for which I work signed a contract with some vendor for cloud-based static code analysis. We ran our biggest project through it and saw just shy of ten thousand vulnerabilities. Now … when an application sits out on the Internet, I get that a million people are going to try to exploit whatever they can in order to compromise your site. When the app is only available internally? I fully support firing anyone who plays hacker against their employer’s tools. When a tool is an automation that no one can access outside of the local host? Lazy, insecure code isn’t anywhere near the same problem it is for user-accessible sites. But the policy is the policy, so any code that gets deployed needs to pass the scan — which means no vulnerabilities identified.
Some vulnerabilities have obvious solutions — SQL injection is one. It’s a commonly known problem — a techy joke is that you’ll name your kid “SomeName’;DROP TABLE STUDENTS; … and most database platforms support parameterized statements to mitigate the vulnerability.
Some vulnerabilities are really a “don’t do that!” problem — as an example, we were updating the server and had a page with info(); on it. Don’t do that! I had some error_log lines that output user info that would be called when the process failed (“Failed to add ecckt $iCircuitID to work order $iWorkOrderID for user $strUserID with $curlError from the web server and $curlRepsonse from the web service”). I liked having the log in place so, when a user rang up with a problem, I had the info available to see what went wrong. The expedient thing to do here, though, was just comment those error_log lines out. I can uncomment the line and have the user try it again. Then checkout back to the commented out iteration of the file when we’re done troubleshooting.
Some, though … static code analysis tools don’t always understand that a problem is sorted when the solution doesn’t match one of their list of ‘approved’ methods. I liken this to early MS MCSE tests — there was a pseudo-GUI that asked you to share out a printer from a server. You had to click the exact right series of places in the pseudo-GUI to answer the question correctly. Shortcut keys were not implemented. Command line solutions were wrong.
So I’ve started documenting the solutions we find that pass the Fortify on Demand scan for everything identified in our scans — hopefully letting the next teams that use the static scanner avoid the trial-and-error we’ve gone through to find an acceptable solution.